点差法(圆锥曲线的定点定值、开放问题,必须提
【考点聚焦突破】
考点一 定点问题
【规律方法】 圆锥曲线中定点问题的两种解法
(1)引进参数法引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.
(2)特殊到一般法,根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.
考点二 定值问题
【规律方法】 圆锥曲线中定值问题的特点及两大解法
(1)特点待证几何量不受动点或动线的影响而有固定的值.
(2)两大解法
①从特殊入手,求出定值,再证明这个值与变量无关;
②引起变量法其解题流程为
考点三 开放问题
【规律方法】 此类问题一般分为探究条件、探究结论两种.若探究条件,则可先假设条件成立,再验证结论是否成立,成立则存在,否则不存在;若探究结论,则应先求出结论的表达式,再针对其表达式进行讨论,往往涉及对参数的讨论.
【反思与感悟】
1.有关弦的三个问题
(1)涉及弦长的问题,应熟练地利用根与系数的关系,设而不求计算弦长;(2)涉及垂直关系往往也是利用根与系数的关系设而不求简化运算;(3)涉及过焦点的弦的问题,可考虑利用圆锥曲线的定义求解.
2.求解与弦有关问题的两种方法
(1)方程组法联立直线方程和圆锥曲线方程,消元(x或y)成为二次方程之后,结合根与系数的关系,建立等式关系或不等式关系.
(2)点差法在求解圆锥曲线且题目中已有直线与圆锥曲线相交和被截线段的中点坐标时,设出直线和圆锥曲线的两个交点坐标,代入圆锥曲线的方程并作差,从而求出直线的斜率,然后利用中点求出直线方程.“点差法”的常见题型有求中点弦方程、求(过定点、平行弦)弦中点轨迹、垂直平分线问题.必须提醒的是“点差法”具有不等价性,即要考虑判别式Δ是否为正数.
【易错防范】
1.求范围问题要注意变量自身的范围.
2.利用几何意义求最值时,要注意“相切”与“公共点唯一”的不等价关系.注意特殊关系、特殊位置的应用.
3.解决定值、定点问题,不要忘记特值法.
比赛规则
- 男足世界杯预选赛亚洲赛程 中国男足世界杯预选
- 雷霆火箭比赛直播:雷霆火箭全场回放
- 中国短道速滑队最新消息 中国短道速滑队再创佳
- 苏炳添今天几点比赛 苏炳添今天比赛时间
- 斯诺克今晚直播比赛 斯诺克今晚直播比赛时间
- 乒乓球女团决赛时间 巴黎奥运会乒乓球女团决赛
- 国乒巴黎奥运会参赛名单 国乒巴黎奥运会参赛名
- 王曼昱晋级全运会乒乓球女单决赛 王曼昱全运会
- 男乒乓球团体赛决赛直播 男乒乓球团体赛决赛直
- 阿尔卡拉斯vs德约科维奇决赛 阿尔卡拉斯vs德约科
- 奥运会乒乓球比赛时间 巴黎奥运会乒乓球比赛时
- 中国男篮奥运落选赛 中国男篮奥运落选赛对手
- 2024斯诺克冠军联赛即将开战 2024斯诺克冠军联赛
- 丁俊晖vs奥沙利文直播 丁俊晖对战奥沙利文战绩
- 西甲国王杯半决赛 西甲国王杯半决赛时间
- 2024年乒乓球比赛赛事 2024年乒乓球比赛时间表