正五边形有多少条对角线(有关正多边形的对角线

沙滩排球 2022-11-28 09:44www.1689878.com沙滩排球

一个有意思的问题正方形有2条对角线,它们相交于中心点,但不会在除中心点以外的点相交。

比如正五边形,它有5条对角线,它们不会相交于中心点,但会在除中心点以外的点相交。这样的交点有5个,每个交点都是由通过不同顶点的2条对角线相交而成。

也就是说,穿过除中心点外的任意一个交点的对角线的最大数目是2。

正六边形有9条对角线

它们能相交于中心点,也会在除中心点外的点相交。除中心点外,对角线的交点共有12个。每个交点也是由通过不同顶点的2条对角线相交而成。穿过除中心点外的任意一个交点的对角线的最大数目也是2。

正七边形有14条对角线

它们不能相交于中心点,但会在除中心点以外的点相交。这样的交点有35个。每个交点也是由通过不同顶点的2条对角线相交而成。穿过除中心点外的任意一个交点的对角线的最大数目还是2。

正八边形有20条对角线

它们能相交于中心点,也会在除中心点外的点相交。除中心点外,对角线的交点有48个。与前面不同的是,除中心点外,有一部分交点上穿过了2条对角线,另一部分则穿过了3条对角线,但不会大于3条。也就是说,穿过除中心点外的任意一个交点的对角线的最大数目是3。


问题来了,正n边形有n(n-3)/2条对角线,穿过除中心点外的任意一个交点的对角线的数目是多少呢?

我们不妨假设它为x,根据前面的经验,x可能是2,可能是3,也可能是4?5?6?7?或者更大?好像有无限种可能。

,你肯定会觉得它会随着n的无限增大而增大吧?

但实际情况可能完全超出你的想象。这个数字并不大,甚至相对于n的无限大和无限可能,x小得有些可怜,而且它只能在一个相当狭小的范围内活动。

真正的答案是不管n是多少,x的最大值是 7,不会更大了。

什么时候x等于7呢?当n等于30,或n是30的倍数的时候。比如正30边形、正60边形、正90边形。

也就是说,正n边形中,汇聚于同一个点(中心点除外)的对角线的数目总是小于或等于7。听起来似乎有点不可思议,但事实就是如此。

Copyright © 2016-2025 www.1689878.com 体育知识网 版权所有 Power by

足球|篮球|NBA|奥运|网球|高尔夫|田径|游泳|排球|赛车|比赛|亚运会